Macroglial plasticity and the origins of reactive astroglia in experimental autoimmune encephalomyelitis.

نویسندگان

  • Fuzheng Guo
  • Yoshiko Maeda
  • Joyce Ma
  • Monica Delgado
  • Jiho Sohn
  • Laird Miers
  • Emily Mills Ko
  • Peter Bannerman
  • Jie Xu
  • Yazhou Wang
  • Chengji Zhou
  • Hirohide Takebayashi
  • David Pleasure
چکیده

Accumulations of hypertrophic, intensely glial fibrillary acidic protein-positive (GFAP(+)) astroglia, which also express immunoreactive nestin and vimentin, are prominent features of multiple sclerosis lesions. The issues of the cellular origin of hypertrophic GFAP(+)/vimentin(+)/nestin(+) "reactive" astroglia and also the plasticities and lineage relationships among three macroglial progenitor populations-oligodendrocyte progenitor cells (OPCs), astrocytes and ependymal cells-during multiple sclerosis and other CNS diseases remain controversial. We used genetic fate-mappings with a battery of inducible Cre drivers (Olig2-Cre-ER(T2), GFAP-Cre-ER(T2), FoxJ1-Cre-ER(T2) and Nestin-Cre-ER(T2)) to explore these issues in adult mice with myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis (EAE). The proliferative rate of spinal cord OPCs rose fivefold above control levels during EAE, and numbers of oligodendroglia increased as well, but astrogenesis from OPCs was rare. Spinal cord ependymal cells, previously reported to be multipotent, did not augment their low proliferative rate, nor give rise to astroglia or OPCs. Instead, the hypertrophic, vimentin(+)/nestin(+), reactive astroglia that accumulated in spinal cord in this multiple sclerosis model were derived by proliferation and phenotypic transformation of fibrous astroglia in white matter, and solely by phenotypic transformation of protoplasmic astroglia in gray matter. This comprehensive analysis of macroglial plasticity in EAE helps to clarify the origins of astrogliosis in CNS inflammatory demyelinative disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 28: Bone Marrow-Derived Mesenchymal Stem Cells Reduces Neuroinflammation and Splenic Cytolytic CD8 + T Cells in Mice with Experimental Autoimmune Encephalomyelitis

Introduction: Multiple sclerosis (MS) has been recognized as a common neurodegenerative disease that occurs after an Auto reactive T cells against myelin antigens.  Demyelination and inflammation are the main features of this disease. The anti-inflammatory and neuroprotective roles of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as a suitable tre...

متن کامل

Linking synaptopathy and gray matter damage in multiple sclerosis.

Introduction Diffuse microglial and astroglial reactions indicate that the innate immune system is chronically activated in the gray matter of multiple sclerosis (MS) and of experimental autoimmune encephalomyelitis (EAE). How neuronal survival is influenced by reactive microglia and astroglia, whose activation should be protective or restorative in neurological diseases, is unclear. Based on r...

متن کامل

Immunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...

متن کامل

Inhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis

Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...

متن کامل

Vitamin D Modulates the Expression of IL-27 and IL-33 in the Central Nervous System in Experimental Autoimmune Encephalomyelitis

Background: It has been reported that vitamin D has broad anti-inflammatory and immunomodulatory effects. Objective: To evaluate the effects of vitamin D on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). Methods: EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein mixed with complete Freund's adjuvant. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 33  شماره 

صفحات  -

تاریخ انتشار 2011